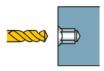

Process Chart

1 Center drilling

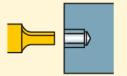
Make a center hole which is smaller than pilot hole drill.

4 Chamfering


Chamfer with the same pilot hole drill as ①

2 Drilling (Pilot hole)

Select a drill with same or smaller (0 \sim -0.1mm) dia. as AF and machine a bit deeper because burs may cause chipping on shaper insert


5 Deburring

Finish and deburr with the same drill as in process②

☆Reduce cutting conditions due to heavy interruption

3 Shaper tool

Machine socket rotating 60 degrees 6 times

SHAPER DUO Process Chart -Hexalobular-

Socket Size	Tool	Pilot bore Dia.	Starting "X" position	Number of passes			Estimated cycle time *		
				Final "X" position (mm)	Roughing pass 0.025mm	Finishing pass 0.005mm	ISO10664 Stadard depth of Hexalobular hole (mm)	Whole process ①-⑤	Process@ Shaper
T6	SSP050N25T06	1.15	1.14	1.75	13	1	1.82	51 sec	23.2 sec
T7	SSP050N31T07	1.38	1.35	2.06	15	1	2.44	59 sec	28.2 sec
T8	SSP050N36T08	1.62	1.59	2.40	17	1	3.05	67 sec	33.8 sec
T10	SSP050N41T10	1.92	1.89	2.80	19	1	3.56	75 sec	39.5 sec
T15	SSP050N43T15	2.30	2.29	3.35	22	1	3.81	84 sec	46.2 sec
T20	SSP050N46T20	2.71	2.69	3.95	26	1	4.07	94 sec	55.4 sec
T25	SSP050N50T25	3,13	3.09	4.50	29	1	4.45	105 sec	63.8 sec
T27	SSP050N55T27	3.52	3.51	5.07	32	1	4.70	115 sec	71.8 sec
T30	SSP050N55T30	3.91	3.89	5.60	35	1	4.95	125 sec	80.2 sec

^{*}Using Carbide drill

Feed: 3000 mm/min

DOC: 0.025 mm (Roughing), 0.005 mm (Finishing)

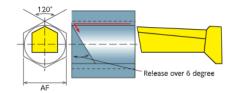
SHAPER DUO Process Chart -Hexagonal-

	Tool	Pilot bore Starting "X" position		Number of passes			Estimated cycle time *		
HEX Standard			Starting "X" position	Final "X" position	Roughing pass	Finishing pass	ISO 2936 standard depth of Hex hole	Whole process	Process④ Shaper
		(mm)	(mm)	(mm)	0.025	0.005	(mm)	0-9	
HEX 1.5	SSP020N1130H	1.5	1.47	1.73	6	1	2	39 sec	14 sec
HEX 2.0	SSP020N1430H	2.0	1.95	2.31	8	1	2.5	44 sec	16 sec
HEX 2.5	SSP030N1940H	2.5	2.48	2.89	9	1	3	50 sec	20 sec
HEX 3.0	SSP030N1940H	3.0	2.95	3.46	11	1	3.5	55 sec	23 sec
HEX 4.0	SSP040N2450H	4.0	3.96	4.62	14	1	5	73 sec	33 sec
HEX 5.0	SSP050N3260H	5.0	4.96	5.77	17	1	6	90 sec	46 sec
HEX 6.0	SSP060N42120H	6.0	5.97	6.93	20	1	8	117 sec	63 sec
HEX 8.0	SSP080N62160H	8.0	7.98	9.24	26	1	10	155 sec	92 sec

^{*} Pilot bore diameter is same or smaller(0-0.1mm) as AF.

Feed: 3000 mm/min

DOC: 0.025 mm (Roughing), 0.005 mm (Finishing)


Recommended Cutting Conditions

Feed: 3000 mm/min (120 IPM)

DOC: Roughing ··· 0.025 mm (.0010") + Finishing ··· 0.005 mm (.0002")

(Based on machining 303 stainless)

Program Example → 6 · 7

^{*}Shaper cutting conditions

^{*}Using Carbide drill

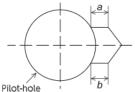
^{*}Shaper cutting conditions

SHAPER DUO Set-up Instructions -Hexagonal

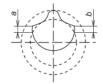
Outside machine

- Set the insert bar in the sleeve and check the parallelism of the flat portion of the sleeve and the insert bar.
- Minimize the overhang of the insert.

Inside machine



- Set the sleeve into the tool post and make sure the sleeve is set parallel.
- Minimize sleeve overhang.


- Increase the number of machining passes with smaller depth of cut if the insert chips with large depth of cut. (0.025mm×5pass is recommended)
- No chamfering process is required for measuring purpose.
- Measure the length of both [a] and [b] with comparator or magnifier.
- Adjust centerline height by rotating the sleeve until you get the same length for [a] and [b]. (The difference should be less than .0008")
 - *If the straight is not seen with increased passes, please reset the insert and the sleeve.
 - Please make sure both the insert and the sleeve are set up correctly.

Machine Hexagonal shape

Run full HEX machining program.

■For Hexalobular machining
Basically same as Hexagonal socket

Hexagon Socket Programming Code Examples from Machine Builders in Metric

Hex socket size: Hex 3.0mm, AF(Final "X" position) 3.46mm, Depth 3.5mm Pilot drill diameter: 3.0mm Starting "X" position: 2.95mm (see chart on W3)

Insert: SSP030N1940N TM4

Parameters: Feed 3000mm/min(120 IPM), DOC(Roughing) 0.025mm, (Finishing) 0.005mm

Programming tips

- Make a program considering final "X" position.
 - #1 Final "X" position: 3.46mm (AF)
 - #2 Finishing position of roughing : 3.46-0.01 (Finishing) = 3.45mm
 - #3 Calculate total DOC for roughing: 3.45-3.0 (Pilot hole)=0.45mm
 - #4 Determine number of cuts: 0.45÷0.05 (DOC for Dia.) = 9.0 + 2 (round down to whole number and add "2" for program adjustment) → Roughing sequence runs 11 times
 - #5 Set starting point: $3.45-(0.05\times(11-1))=2.95$ mm: must subtract by "1" for program adjustment

CITIZEN

Main Program Sequence

```
M78 S0 .....
Shaper
G0 X2.95 Z-2.0 T** .....||
M98 P2100 L11 .....|V
              .....V
M98 P2200
M78 S60
G0 X2.95 Z-2.0
                        <a>
M98 P2100 L11
M98 P2200
```

Repeat <a> program sequence 4 more times to complete the cuts at \$120, \$180, \$240, \$300 (represents 120°, 180°, 240°, 300°).

M20 G0 Z-2.0 GO UO WO TO

Sub-Program Sequence #1 for Roughing

```
G4 U0.02 ······A
G98 G1 Z3.5 F3000 ······B
G4 U0.02
U-0.2 W-0.018 .....C
G4 U0.02
G0 Z-2.0
G4 U0.02
U0.25
```

Sub-Program Sequence #2 for Finishing

```
N2200
G98 G1 X3,46 Z-2,0 F1000 .....E
G4 U0.02
73 5 F3000
G4 U0.02
U-0.2 W-0.018
G4 U0.02
G0 Z-2.0
```

STAR

M25

Shaper

Main Program Sequence

```
G50 U1.5 .....II
G0 X2.95 Z-2.0 C0 T** ······I, III
M98 P2100 L11 ······IV
M98 P2200 .....V
G0 C60.0
G0 X2.95 Z-2.0
                          <a>
M98 P2100 L11
M98 P2200
```

Repeat <a> program sequence 4 more times to complete the cuts at C120.0, C180.0, C240.0, C300.0 (represents 120°, 180°, 240°,

G0 Z-2.0 G50 U-1.5 G0 T0 G28 W0

Sub-Program Sequence #1 for Roughing

```
G4 U0.02
G98 G1 Z3.5 F3000 .....B
G4 U0.02
U-0.2 W-0.018 .....C
G4 U0.02
G0 Z-2.0
G4 U0.02
U0.25
```

Sub-Program Sequence #2 for Finishing

```
O2200
G98 G1 X3.46 Z-2,0 F1000 ······E
G4 U0.02
73 5 F3000
G4 U0.02
U-0.2 W-0.018
G4 U0.02
G0 Z-2.0
```

TSUGAMI

```
M150
G28 H0 -----I
M182
            T****
Shaper
G50 U1.5 .....||
G0 X2.95 Z2.0 T** ·····|||
M98 P2100 L11 .....IV
M98 P2200 .....V
G0 C60 .....
M182
G0 X2.95 Z2.0
M98 P2100 L11
                          <a>
M98 P2200
   Repeat <a> program sequence 4 more times
```

Main Program Sequence

to complete the cuts at C120, C180, C240, C300 (represents 120°, 180°, 240°, 300°).

G0 Z2.0 G50 U-1.5 G0 U0 W0 T0

Sub-Program Sequence #1 for Roughing

```
02100
G4 U0.02 ······A
G98 G1 Z-3.5 F3000 ······B
G4 U0.02
U-0.2 W0.018 .....C
G4 U0.02
G0 Z2.0
G4 U0.02
U0.25
```

Sub-Program Sequence #2 for Finishing

```
O2200
G98 G1 X3.46 Z2.0 F1000 ······E
G4 U0.02
Z-3.5 F3000
G4 U0.02
U-0.2 W0.018
G4 U0.02
G0 Z2.0
```

- I. Index the sub-spindle 6 times in 60 degree increments.
- II. Specify the coordinate system shift command (in X axis direction) for the tool. [2 x f, where f is tool dimension located in catalog].
 - · A positive direction shift is recommended for easier programming.
- III. Execute the positioning of the tool.
 - · X position should be smaller than pilot drill diameter.
 - · Z position should be offset 2.0 mm from material to achieve program feed rate.
- IV. Go to the Sub-Program #1.
 - Sequence runs 11 times. First cutting point X2.95 and final cutting point X3.45, with 0.05 DOC (for diameter) each time.
- A. Specify dwell time. This allows the program and machine to stay synchronized.
- B. Cut into part 3.5mm. F3000 is recommended feed to be used for most materials; including Titanium Alloy and Stainless Steel.
- C. This code backs off the tool with an angle greater than 6 degrees (10 degrees used in example). See page W3.
- D. Return to the X position + 0.05mm (the DOC for diameter).
- V. Go to the Sub-Program #2, for finishing sequence.
 - E. Finishing operation with 0,005mm DOC (X 3,46) is recommended for better surface finish.

Hexalobular Socket Programming Code Examples from Machine Builders in Metric

Hexalobular socket size: Hexalobular T15 (depth: 3.81mm)

Pilot drill diameter: 2.3mm Insert: SSP050N43T15 TM4

Parameters: Feed 3000mm/min(120 IPM), DOC(Roughing) 0.025mm, (Finishing) 0.005mm

Programming tips

Make a program considering final "X" position.

#1 Final "X"position: 3.35mm(A)

#2 Finishing position of roughing : 3.35-0.01 (Finishing) = 3.34mm

#3 Calculate total DOC for roughing : 3.34-2.3 (Pilot hole) = 1.04mm

Determine number of cuts: 1.04÷0.05 (DOC for Dia)=20.8 + 2 (round down to whole number and add "2" for program adjustment) → Roughing sequence runs 22 times

#5 Set starting point : $3.34-(0.05\times(22-1)) = 2.29$ mm: must subtract by "1" for program adjustment

CITIZEN

M25

Main Program Sequence

M78 S0 ... Shaper T**** G50 U4.8| G0 X2,29 Z-2,0 T** M98 P2100 L22IV M98 P2200V M78 S60

Repeat <a> program sequence 4 more times to complete the cuts at \$120, \$180, \$240, \$300 (represents 120°, 180°, 240°, 300°).

M20 G0 Z-2.0 G50 U-4.8 G0 U0 W0 T0

G0 X2.29 Z-2.0 M98 P2100 L22

Sub-Program Sequence #1 for Roughing

N2100 G4 U0.02 G98 G1 Z3.81 F3000B G4 U0.02 U-0.2 W-0.018C G4 U0.02 G0 Z-2.0 G4 U0.02

Sub-Program Sequence #2 for Finishing

G98 G1 X3.35 Z-2.0 F1000 ······E G4 U0.02 Z3.81 F3000 G4 U0.02 U-0.2 W-0.018 G4 U0.02 G0 Z-2.0 M99

STAR

Main Program Sequence

M25 Shaper G50 U4.8| M8 G0 X2,29 Z-2,0 C0 T**|, ||| M98 P2100 L22IV M98 P2200V

G0 C60.0 G0 X2.29 Z-2.0 M98 P2100 L22

Repeat <a> program sequence 4 more times to complete the cuts at C120.0, C180.0, C240.0, C300.0 (represents 120°, 180°, 240°, 300°).

G0 Z-2.0 G50 U-4.8 G0 T0 G28 W0

Sub-Program Sequence #1 for Roughing

O2100 G4 U0.02 G98 G1 Z3.81 F3000B G4 U0.02 U-0.2 W-0.018 ······C G4 U0.02 G0 Z-2.0 G4 U0.02

Sub-Program Sequence #2 for Finishing

G98 G1 X3,35 Z-2.0 F1000E G4 U0.02 Z3.81 F3000 G4 U0.02 U-0.2 W-0.018 G4 U0.02 G0 Z-2.0 M99

TSUGAMI

M105

M150 G28 H0 M182 Shaper G50 U4.8 ·····|| G0 X2.29 Z2.0 T** M98 P2100 L22IV M98 P2200 M183 G0 C60I M182 G0 X2.29 Z2.0 <a> M98 P2100 L22 M98 P2200 M183

Main Program Sequence

Repeat <a> program sequence 4 more times to complete the cuts at C120, C180, C240, C300 (represents 120°, 180°, 240°, 300°).

M151 G0 Z2.0 G50 U-4.8 G0 U0 W0 T0

Sub-Program Sequence #1 for Roughing

O2100 G4 U0.02 G98 G1 Z-3.81 F3000B G4 U0.02 U-0.2 W0.018C G4 U0.02 G0 Z2.0 G4 U0.02 U0.25 M99

Sub-Program Sequence #2 for Finishing O2200 G98 G1 X3.35 Z2.0 F1000E G4 U0.02 Z-3.81 F3000 G4 U0.02 U-0.2 W0.018 G4 U0,02 G0 Z2.0 M99

- I. Index the sub-spindle 6 times in 60 degree increments.
- II. Specify the coordinate system shift command (in X axis direction) for the tool. [2 x f, where f is too! dimension located in catalog].
 - · A positive direction shift is recommended for easier programming.
- III. Execute the positioning of the tool.
 - · X position should be smaller than pilot drill diameter.
 - · Z position should be offset 2.0 mm from material to achieve program feed rate.
- IV. Go to the Sub-Program #1.
 - Sequence runs 22 times. First cutting point X2.29 and final cutting point X3.34, with 0.05 DOC (for diameter) each time,
- A. Specify dwell time. This allows the program and machine to stay
- B. Cut into part 3.81mm. F3000 is recommended feed to be used for most materials; including Titanium Alloy and Stainless Steel.
- C. This code backs off the tool with an angle greater than 6 degrees (10 degrees used in example). See page W3.
- D. Return to the X position + 0.05mm (the DOC for diameter).
- V. Go to the Sub-Program #2, for finishing sequence.
 - E. Finishing operation with 0.005mm DOC (X 3.35) is recommended for better surface finish.