# **Thread Whirling**

高能率ねじ切り加工用 │ CNC 自動旋盤用





インプラントねじ、ボーンスクリュなどの医療ねじ加工の高能率生産が可能 切削加工が困難なウォームねじも多数実績あり





#### 高能率ねじ切り加工用ICNC自動旋盤向け

## スレッドワーリング

#### ▮性能

CNC自動旋盤に於けるねじ切り加工は、複数回の切込みを繰り 返し行う事で加工される為、長いねじを加工する際にはガイド ブッシュから外れない様に加工しなければなりません。

しかしスレッドワーリングは1パス加工が可能で、繋ぎ加工も不

また2条ねじや3条ねじと言った多条ねじに於いても1パス加工 が可能である為、複数回の切込みや繋ぎ加工が不要で高能率な ねじ切り加工を実現します。

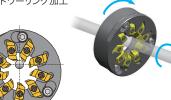
- ・3枚刃、6枚刃カッタボディをラインナップ
- ・1コーナインサートが選択可能に

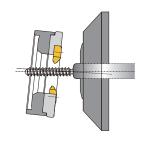




たねじ用カッタボディをラインナップ

|          | 2条ねじ一発加工例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3条ねじ一発加工例   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <br>ワーク名 | ボーンスクリュ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ウォームねじ      |
| 被削材      | Ti-6Al-4V ELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 真 鍮         |
| ワーク      | A STATE OF THE STA | A RESIDENCE |
| チップ形状    | <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tu.         |
| <br>ねじ外径 | φ4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | φ7.0        |
| ねじ底径     | φ2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | φ4.7        |
| リード      | 3.42mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.9mm       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |


多条ねじ一発加工の際は「機械仕様」「スピンドル仕様」「チップ仕様」「ツーリング仕様」等に 制限がありますので、ご相談承ります。


#### ┃加工概要

スレッドワーリング加工はNTK独自算出のセット角度分スピン ドルを傾け、カッタを高速・ワークを低速(C軸機能)で回転させ ながら加工します。

インサートにはサラエ刃が付いており、外径も同時に加工する事 が可能です。







#### ▮特殊ねじ形状の加工技術

- ・ ねじ仕様が一点一様の医療ねじでも、NTK独自のインサート設計技術でトライ&エラー無しでインサートの生産が可能
- ・ シャープな刃先とPVDコートの組み合わせにより、優れた仕上げ面と長寿命加工を実現

#### ▮使用手順

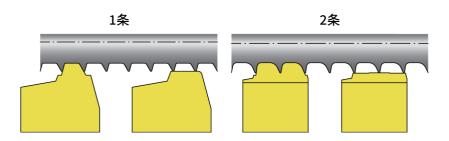
- 1. お手持ちの機種・スピンドルをご確認ください。弊社ラインナップから、適したワーリングカッタをご選択ください。
- 2. ワーク図面をNTKへご送付ください。NTKでは、ワーク図面から、リード角・インサート形状を算出し、専用インサートを製作します。
- 3. ワーリングを指定のリード角でセットし、切削条件を設定します。

#### ▮ NTK 独自の簡単脱着システム

ボルトを外すことなく容易にホルダが脱着でき、機外でのインサート交換が可能です

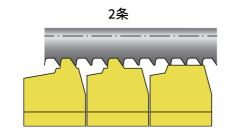


①ホルダ固定用ボルトを緩める


②インサート交換用ホルダを10°回す

③インサート交換用ホルダを引き抜く (ボルトを外す必要なし)

### NTKは多条ねじの一発加工にも対応!


#### Ⅰ多条ねじ加工方法例

#### 外径ねじ山部がフラット形状の場合



2つのインサートの組み合わせにより、図面に合わせて外径ねじ山部をフラットに加工可能です。

#### 小径ねじを加工する場合



NTKスレッドワーリングは小径かつ多条ねじ加工にも対応。 ねじ形状毎に最適なインサートを設計・製作するため、 安定したねじ加工が可能です。

#### ▮2条ねじ加工プロセス例

- 1. 先端テーパ部1回目加工 ※先端のねじがテーパ形状の場合、テーパー部は2回加工する必要があります
- 2. 位相を180°変えて先端部2回目加工
- 3. ストレートねじ部加工
- 4. ねじの出際に2つの出口を得るために、位相を180°変えて出際部だけ追加工を行う

刃数

サイクルタイムとコストのバランスに合わせて刃数を選択出来る様になりました。

## Thread Whirling **ECO**





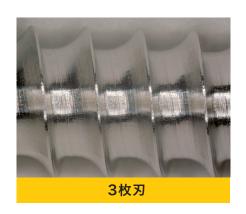


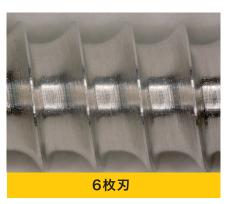
9枚刃

コスト重視

バランス

加工能率重視


左ねじ用


左ねじ用のカッタを追加し、幅広いワークに対応が可能となりました。



#### ▮加工面比較

適正な加工条件で加工する事で綺麗な加工面が得られます。



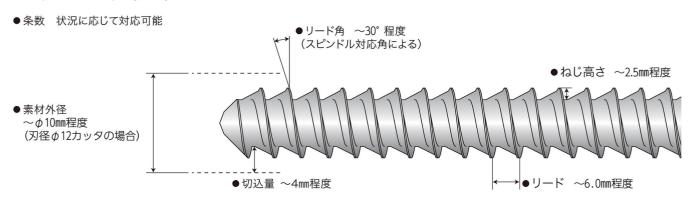




主軸:15rpm カッタ:4,000rpm

#### | インサート

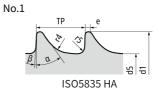
加工ワークの生産数に合わせてコーナ数を選択出来る様になりました。




試作・少量多品種向け



大量生産向け


#### Ⅰ対応可能なねじ形状(目安)



上記の数値は目安であり、ワーク形状によって異なる可能性があります。

### ISOねじ形状シリーズ TWC..シリーズ用インサート 超硬

#### ISO5835



No.2

TP

e

ISO5835 HB

●刃径φ12カッタ用です

| 図番 | 品番(メートル)         |    | ブレーカ | ISO規格 ピッ | L T  | ₹ d1 | d5  |     | r4  | r5  | α  | β  | 超硬     |     |       |     |
|----|------------------|----|------|----------|------|------|-----|-----|-----|-----|----|----|--------|-----|-------|-----|
|    |                  | 勝手 |      |          | Lyr  |      | us  | е   |     |     |    |    | PVDコート |     | ノンコート |     |
|    |                  |    |      |          | mm   | mm   | mm  | mm  | mm  | mm  | mm | mm | QM3    | VM1 | ZM3   | KM1 |
| 1  | TW5835-HA1.5-D12 | R  | あり   | HA1.5    | 0.5  | 1.5  | 1.1 | 0.1 | 0.3 | 0.1 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA2.0-D12 | R  | あり   | HA2.0    | 0.6  | 2    | 1.3 | 0.1 | 0.4 | 0.1 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA2.7-D12 | R  | あり   | HA2.7    | 1    | 2.7  | 1.9 | 0.1 | 0.6 | 0.2 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA3.5-D12 | R  | あり   | HA3.5    | 1.25 | 3.5  | 2.4 | 0.1 | 0.8 | 0.2 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA4.0-D12 | R  | あり   | HA4.0    | 1.5  | 4    | 2.9 | 0.1 | 0.8 | 0.2 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA4.5-D12 | R  | あり   | HA4.5    | 1.75 | 4.5  | 3   | 0.1 | 1   | 0.3 | 35 | 3  |        |     | •     |     |
| 1  | TW5835-HA5.0-D12 | R  | あり   | HA5.0    | 1.75 | 5    | 3.5 | 0.1 | 1   | 0.3 | 35 | 3  |        |     | •     |     |
| 2  | TW5835-HB4.0-D12 | R  | あり   | HB4.0    | 1.75 | 4    | 1.9 | 0.1 | 0.8 | 0.3 | 25 | 5  |        |     | •     |     |
| 2  | TW5835-HB6.5-D12 | R  | あり   | HB6.5    | 2.75 | 6.5  | 3   | 0.2 | 1.2 | 0.8 | 25 | 5  |        |     | •     |     |

#### ┃簡易推薦切削条件表

| 切削条件\カ                                            | ッタ刃数              | 9             | 6           | 4           | 3    |  |  |  |  |  |
|---------------------------------------------------|-------------------|---------------|-------------|-------------|------|--|--|--|--|--|
| ワーク回転数                                            | min-1             | 10-40         | 10-25       | 7-15        | 5-12 |  |  |  |  |  |
| カッタ回転数                                            | min <sup>-1</sup> | 1,500 - 4,000 |             |             |      |  |  |  |  |  |
|                                                   |                   |               | リード(ピッチ×条数) |             |      |  |  |  |  |  |
| 素材径                                               | mm                | -φ10          | -φ10        | <i>-ϕ</i> 8 | -φ10 |  |  |  |  |  |
| 被削材 Ti-6Al-4V EL / SUS316 / 17-4PH / 純チタン / 真鍮 など |                   |               |             |             |      |  |  |  |  |  |

#### スレッドワーリング加工の加工時間計算式(ねじ部の加工のみ)

#### ┃加工事例





NTKカッティングツールズ株式会社 〒485-8510 愛知県小牧市大字岩崎2808



www.ntkcuttingtools.com/jp/contact/ サンプル依頼 お問い合わせはこちら

