

Milling with NTK Grades by Application

General Guidelines for Successful Milling

- Select the best grade for the application
- Select cutter diameter 1.5 times greater than the workpiece width
- Eliminate any overhang to increase stability
- Choose the strongest nose radius
- No Coolant. Use compressed air
- Check clamp and part rigidity

Guidelines for Successful Milling by Material

Heat resistant alloy / PH stainless steel

- Down or climb milling where the chip thins upon exit is the preferred method for HNBA materials
- Reduce feed rate 50% upon entrance and exit
- Do not recut side walls as this can cause work hardening
- Use balanced shell mill adapter or shrink fit for end-mills
- As DOC gets thinner the feed must be increased to compensate for heat loss
- Use RPG geometries if tool pressure is a problem
- E01, E02 edge preparation recommended

Hardened Steel / Die mold / Chilled iron / Overlay

- Larger edge preparations need to be used
- Speed is reduced as hardness goes up

Cast iron / Ductile cast iron

- Parts that are cast are more difficult to machine than forged • decrease feed rates by 25%
- Maximize feed rates for gray cast irons

Trouble shooting

Material	Insert Grade	NTK Grade	Problem	Solution					
				Speed	Feed	DOC	Edge Prep.	Insert Grade	Others
Stainless Steel	Cermet	С7Х	Chipping	_	1	_	_	_	_
			BUE	*	_	_	_	_	
			Break	_	1	1	_	_	_
Hardened Steel	Ceramic	HC7 WA1	Chipping	_	1	_	Wider	_	
			Break	1	1	_	_	_	_
Cast Iron	Silicon Nitride	SX6 SP9	Chipping	1	1	_	Wider	_	
			Break	*	*	1	_	Tougher	Larger radius
			Themal Crack	1	*	_	_	_	
			Crater Wear	_	_	_	Sharper	_	_
Heat Resistant Alloy	SiAlON	SX9 SX7	Notching	*	*	Vary / ┪	Wider	_	Pre-chamfer parts
			Flank Wear	1	*	_	_	Harder	_
			Chipping	_	_		Wider	Tougher	_
			Break	1	_	1	_	Tougher	_
			Tool Pressure	_	_	_	_	_	Use RPG insert